Dirichlet Forms on the Sierpiński Gasket

نویسندگان

  • Robert Meyers
  • Robert S. Strichartz
  • Alexander Teplyaev
چکیده

We study not necessarily self-similar Dirichlet forms on the Sierpiński gasket that can be described as limits of compatible resistance networks on the sequence of graphs approximating the gasket. We describe the compatibility conditions in detail, and we also present an alternative description, based on just 3 conductance values and the 3-dimensional space of harmonic functions. In addition, we show how to parameterize all the Dirichlet forms by a set of independent variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy and Laplacian on the Sierpiński Gasket

This is an expository paper which includes several topics related to the Dirichlet form analysis on the Sierpiński gasket. We discuss the analog of the classical Laplacian; approximation by harmonic functions that gives a notion of a gradient; directional energies and an equipartition of energy; analysis with respect to the energy measure; harmonic coordinates; and non self-similar Dirichlet fo...

متن کامل

Coloring Sierpiński graphs and Sierpiński gasket graphs

Sierpiński graphs S(n, 3) are the graphs of the Tower of Hanoi with n disks, while Sierpiński gasket graphs Sn are the graphs naturally defined by the finite number of iterations that lead to the Sierpiński gasket. An explicit labeling of the vertices of Sn is introduced. It is proved that Sn is uniquely 3-colorable, that S(n, 3) is uniquely 3-edgecolorable, and that χ′(Sn) = 4, thus answering ...

متن کامل

Some Spectral Properties of Pseudo-differential Operators on the Sierpiński Gasket

We prove versions of the strong Szëgo limit theorem for certain classes of pseudodifferential operators defined on the Sierpiński gasket. Our results used in a fundamental way the existence of localized eigenfunctions for the Laplacian on this fractal.

متن کامل

Szegö Limit Theorems on the Sierpiński Gasket

We use the existence of localized eigenfunctions of the Laplacian on the Sierpiński gasket (SG) to formulate and prove analogues of the strong Szegö limit theorem in this fractal setting. Furthermore, we recast some of our results in terms of equally distributed sequences.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004